
C2-Frameworks:
Command & Control in
der Netzwerksicherheit

Die verborgene Infrastruktur
moderner Cyber Operationen

Sebastian Feustel

2

Diese Hacking-Tools sind ausschließlich für Bildungszwecke, Schulungen
und Penetrationstests bestimmt. Hacking-Versuche auf Computern, die
Ihnen nicht gehören (ohne Erlaubnis), sind illegal! Versuchen Sie nicht,
Zugriff auf Geräte zu erlangen, die Ihnen nicht gehören.

Ausblick
Operation Phantom | Killchain
Einleitung

Theoretische Grundlagen & History
Ziel | Geschichte | Architektur

Tools & Live Demo
BOF | Empire | Havoc | Silver

Kommunikation & Tarnung
Verschleierung von Silver

01

02

03

04

3

Operation Phantom
01

Kims Schattenkanal

4

Überblick Operation Phanton

● Angriffs Start September 2024

● Verantwortlich Lazerus Gruppe APT38 (Nordkorea)

● Zielgruppe: Entwickler teams im Bereich Kryptowährung

und Technologie weltweit

● Nutzung komplexer Infrastruktur mit VPNs, russischer

Proxy-Server

5

6

Killchain
02

Nach Lockheed Martin

7

Quelle: https://de.wikipedia.org/wiki/Cyber_Kill_Chain 8

Ziele
03
Aus Red Team Sicht

9

10

Geschichte
04

Von den 90s bis heute

11

Geschichte
ca. 1998–2003 | IRC-C2

● Botnets über öffentliche IRC-Server
● Klartext, leicht zu takedownen
● Beispiel: GTBot, Sdbot

2004–2010 | HTTP-basierte C2

● Wechsel von IRC zu HTTP
● Tarnung als Web-Traffic
● Beispiel: Zeus, SpyEye

2011–2017 | Verschlüsselung & Custom Protokolle

● HTTPS, eigene Binary-Protokolle
● Fokus auf Stealth & Persistenz
● Cobalt Strike entsteht
● SkyWiper (Flame) Lua-basierte Module
● Dynamisches Nachladen

Quelle: https://web.archive.org/web/20120528142705/http://www.crysys.hu/skywiper/skywiper.pdf
 https://netlas.io/blog/evolution_of_c2_infrastructure/ 12

https://web.archive.org/web/20120528142705/http://www.crysys.hu/skywiper/skywiper.pdf
https://netlas.io/blog/evolution_of_c2_infrastructure/

Geschichte
2018–2020 | BOF & In-Memory

● Cobalt Strike 3.13 (Ende 2019) führte Beacon
Object Files (BOF) offiziell ein

● Fileless Post-Exploitation

2021–heute | Cloud & Evasion

● Nutzung legitimer Cloud-Dienste
a. Meshcentral (Awaken Likho)
b. Github Action (Shai-Hulud)
c. AnyDesk (Cozy Bear APT29)

● Kurzlebige Beacons, starke OPSEC

Quelle: https://www.wiz.io/blog/shai-hulud-2-0-ongoing-supply-chain-attack
 https://securelist.com/awaken-likho-apt-new-implant-campaign/114101/ 13

https://www.wiz.io/blog/shai-hulud-2-0-ongoing-supply-chain-attack
https://securelist.com/awaken-likho-apt-new-implant-campaign/114101/

Youtube-Video zu Shai-Hulud

14

http://www.youtube.com/watch?v=lqZo4waMB3c

Architektur
05

Aufbau von C2 Frameworks

15

16

Architektur
Human Operator

Client

C2-Server

Implant | Agent |
Beacon (CS)

Implant | Agent |
Beacon (CS)

BOF
06

Beacon Object Files

17

18

Beacon Object File

● Werden zur Laufzeit in den Beacon-Prozess geladen (In-Memory, kein Schreiben auf Disk)

● Nutzen das COFF-Format (kein vollständiges PE, kein Linker zur Laufzeit)

● Verwenden eine eingeschränkte C-Runtime (keine libc / WinAPI nur über Beacon-APIs)

● Erweitern Implant-Funktionalität, ohne neue DLLs/EXEs zu droppen

● Ideal für Post-Exploitation Tasks (z. B. Enum, Dump, Token, Lateral Movement)

● Können opsec-freundlicher sein als klassische Payloads

Quelle: https://de.wikipedia.org/wiki/Common_Object_File_Format

https://de.wikipedia.org/wiki/Common_Object_File_Format

19

BOF Beispiele Aufgaben

Quelle: https://github.com/trustedsec/CS-Situational-Awareness-BOF

🧭 Host- & System-Enumeration

● Laufende Prozesse auflisten
● Uptime ermitteln
● Lokale Systemeinstellungen (Sprache | Tastaturlayout | Zeitzone)
● Hostname & lokale Benutzer
● Betriebssystem-Version / Build

🌐 Netzwerk-Enumeration

● IP-Adressen ermitteln
● Routing-Tabelle lesen
● ARP-Cache / ARP-Listen auslesen
● DNS-Cache lesen
● Aktive Netzwerk-Interfaces
● Offene Ports (lokal, rudimentär)

🧱 Security- & Defense-Discovery

● Windows Firewall Rules lesen
● Antivirus / EDR-Erkennung
● AppLocker / Defender-Policies
● Antimalware Scan Interface Status (teilweise)

🗂 Datei- & Ressourcen-Zugriff

● Verzeichnisse / Dateien auflisten
● Zugriff auf Shares prüfen
● Datei Metadaten lesen (Größe, Zeitstempel)

https://github.com/trustedsec/CS-Situational-Awareness-BOF

20

Youtube-Video zu BOFs

http://www.youtube.com/watch?v=p3fByg8pa1g

21

Minimal Entwicklung von BOFs
Compiler installieren:

Code:

Zu COFF kompilieren :

22

Hello World als BOF

● Beacon.h von Cobalt Strike herunterladen

● Nutzen von Funktionen z.B. BeaconPrintf

Quelle: https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_how-to-develop.htm
 https://github.com/Cobalt-Strike/bof_template

https://hstechdocs.helpsystems.com/manuals/cobaltstrike/current/userguide/content/topics/beacon-object-files_how-to-develop.htm
https://github.com/Cobalt-Strike/bof_template

23

Hello World als BOF
● Nutzen eines Loaders der COFF Datei Beispiel: https://github.com/trustedsec/COFFLoader

● Implants der C2 Frameworks können diese dann laden

https://github.com/trustedsec/COFFLoader

C2 Frameworks
07

Werkzeuge für die C2 Kommunikation

24

25

Cobalt Strike

Quelle: https://www.fortra.com/de/product-lines/cobalt-strike

Kommerzielles Red-Team-Framework zur Simulation von Advanced
Persistent Threats (APT)

Unterstützt klassische C2-Kommunikation:

● HTTP / HTTPS
● DNS
● SMB (Peer-to-Peer)

Post-Exploitation-Funktionen:

● Command Execution
● Credential Dumping
● Lateral Movement
● Privilege Escalation

Gilt heute als „Goldstandard“ für C2-Frameworks sowohl bei Red Teams
als auch bei realen Threat Actors

https://www.fortra.com/de/product-lines/cobalt-strike

26

Nr Name URL Stars
1 Sliver https://github.com/BishopFox/sliver 10440
2 Havoc https://github.com/HavocFramework/Havoc 8039
3 Merlin https://github.com/Ne0nd0g/merlin 5462
4 Empire https://github.com/BC-SECURITY/Empire 4975
5 Mythic https://github.com/its-a-feature/Mythic 4208
6 SILENTTRINITY https://github.com/byt3bl33d3r/SILENTTRINITY 2304
7 PoshC2 https://github.com/nettitude/PoshC2 2075
8 SharpSploit https://github.com/cobbr/SharpSploit 1853
9 trevorc2 https://github.com/trustedsec/trevorc2 1302
10 Loki https://github.com/boku7/Loki 1267
11 Malice-network https://github.com/chainreactors/malice-network 403
12 koadic https://github.com/offsecginger/koadic 328
13 NamelessC2 https://github.com/trickster0/NamelessC2 284
14 Conquest https://github.com/jakobfriedl/conquest 249
15 ThunderStorm https://github.com/iDigitalFlame/ThunderStorm 40

Quellcode offene Frameworks

27

Mein Setup

● vServer Hetzner als C2 Server: 46.224.114.83

● Ziel System: Windows im Winboat (Docker)

● Client mein Laptop

28

Empire

Quellen: https://github.com/BC-SECURITY/Empire
 https://github.com/BC-SECURITY/Starkiller
 https://bc-security.gitbook.io/empire-wiki

● Empire ein Framework in Powershell basiert

● Client heißt Starkiller eine WebUI entwickelt mit Vue

● C2-Protokolle (HTTP/S, SMB, TCP)

● Firma dahinter BC Security

https://github.com/BC-SECURITY/Empire
https://github.com/BC-SECURITY/Starkiller
https://bc-security.gitbook.io/empire-wiki

29

Demo-Video-1

30

Havoc

Quellen: https://havocframework.com/docs/installation
 https://github.com/HavocFramework/Havoc

● Server in Golang

● Demon-Agent als Implant

● GUI-Client (C++, Qt)

● HTTPS / WebSocket-basierte C2-Kommunikation

● Unterstützt BOF-ähnliche Module (COFF Loader)

https://havocframework.com/docs/installation
https://github.com/HavocFramework/Havoc

31

Demo-Video-2

Youtube-Video zu Havoc

32

http://www.youtube.com/watch?v=ErPKP4Ms28s

33

Sliver

Quellen: https://github.com/BishopFox/sliver
 https://sliver.sh/

● Entwickelt in Golang (Server und Implant)

● Unterstützung für HTTP/S, mTLS, DNS, WireGuard

● BOF-Support

● CLI-first Workflow, gut skriptbar

● Multiplayer / Multi-Operator fähig

● Sehr beliebt als Cobalt-Strike-Alternative

● Große Community

https://github.com/BishopFox/sliver
https://sliver.sh/

34

Demo-Video-3

Youtube-Video zu Sliver

35

http://www.youtube.com/watch?v=lMihdys4jw8

Kommunikation &
Tarnung

08
Die Verschleierung der

Kommunikation

36

37

Sliver Kommunikation
● Nutzung von Standard-HTTP-Methoden

 GET für Beaconing, POST für Task-Ergebnisse

● Realistische URL-Strukturen
 z. B. /api/v1/status, /assets/js/app.js, /update/check

● Legitime HTTP-Header
 User-Agent, Accept, Accept-Language, Referer

● Browser-ähnliches Verhalten
 Gleiche Header-Reihenfolge, Case, Default-Werte

● Antworten sehen aus wie normale Webinhalte
 JSON, HTML, JavaScript, Bilder (Content-Type passend)

● Variable Request-Größen
 Kein gleichbleibendes Beacon-Pattern

● Timing wie bei Web-Nutzung
 Unregelmäßige Abstände, Tageszeit-bezogen

38

Demo-Video-4

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

Danke!
Habt ihr noch Fragen?

sebastian.feustel@protonmail.com
www.sebastian-feustel.de

Please keep this slide for attribution

39

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

40

